Analisis Kecocokan Model Autoregressive Integrated Moving Average (ARIMA) dalam Prediksi Penyebaran COVID-19 (Studi Kasus: Kabupaten Bone, Sulawesi Selatan)

Ainun Zahra Adistia

Sari


Pandemi COVID-19 yang telah menimpa dunia sejak akhir tahun 2019 memberikan pelajaran berharga mengenai urgensi kesiapsiagaan dan respons yang cepat dalam menanggapi wabah penyakit menular. Meskipun saat ini pandemi COVID-19 telah mereda dan situasinya mulai kembali normal, pengalaman dalam beberapa tahun terakhir menegaskan perlunya pengembangan metode prediksi yang dapat diandalkan untuk mengantisipasi kemungkinan wabah di masa depan. penelitian ini bertujuan untuk mengidentifikasi dan menganalisis pola penyebaran COVID-19 di Kabupaten Bone, menerapkan model ARIMA untuk memprediksi jumlah kasus COVID-19 di masa depan, serta mengevaluasi kecocokan dan akurasi model ARIMA dengan data aktual. Penelitian ini menggunakan pendekatan kuantitatif dengan metode Autoregressive Integrated Moving Average (ARIMA). Hasil dari penelitian ini menunjukkan bahwa metode ARIMA memiliki keterbatasan dalam menangani pola nonlinier.


Teks Lengkap:

PDF

Referensi


Zahrotunnimah, “Langkah Taktis Pemerintah dalam Pencegahan Penyebaran Virus Corona Covid-19 di Indonesia,” Jurnal Sosial & Budaya Syar’i, vol. 7, no. 3, pp. 247–260, 2020.

C. Gunawan, Anomali COVID-19 : Dampak Positif Virus Corona Untuk Dunia, (M. Archi (ed.)). CV IRDH., 2020.

W. Seto, D. Tsang, and R. Yung, “Effectiveness of Precautions Against Droplets and Contact in Prevention of Nosocomial Transmission of Severe Acute Respiratory Syndrome (SARS),” Lancet, vol. 361, no. 9368, pp. 1519–1520, 2003.

Nurahman and A. Diana, “ALGORITMA K-MEANS UNTUK MELIHAT PENULARAN TERTINGGI VIRUS COVID-19 DISELURUH PROVINSI INDONESIA,” Jurnal Ilmiah Betrik, vol. 12, no. 02, 2021.

S. Burwell, F. Townsend, T. Bollyky, and S. Patrick, Improving Pandemic Preparedness Lessons From COVID-19. New York: Council on Foreign Relations, 2020.

H. Wiguna, Y. Nugraha, R. Farizah, A. Andika, K. Juan, and S. Alex, “Kebijakan Berbasis Data: Analisis dan Prediksi Penyebaran COVID-19 di Jakarta dengan Metode Autoregressive Integrated Moving Average (ARIMA),” Jurnal Sistem Cerdas, vol. 03, no. 02, pp. 74–83, 2020.

D. Benvenuto, M. Giovanetti, L. Vasallo, S. Angeletti, and M. Ciccozzi, “Application of the ARIMA model on the COVID-2019 epidemic dataset,” Data in brief, vol. 29, p. 105340, 2020.

T. Chakraborty and I. Ghosh, “Real-time forecasts and risk assessment of novel coronavirus (COVID-19) cases: A data-driven analysis.,” Chaos, Solitons & Fractals, vol. 135, p. 109850, 2020.

M. Syafrudin, L. Fitriyani, and J. Rhee, “Forecasting COVID-19 cases in Indonesia using ARIMA models. Journal of Infection and Public Health,” vol. 14, no. 6, pp. 863–868, 2021.

R. Adhikari and R. Agrawal, “An Introductory Study on Time series Modeling and Forecasting,” LAP LAMBERT Academic Publishing, 2013.

G. Makridakis, C. Wheelwright, and R. Hyndman, Forecasting: Methods and Application, 3rd ed. New Jersey: John Wiley & Sons, Inc., 1998.

C. Wilmott and K. Matsuura, “Advantages of the Mean Absolute Error (MAE) over the Root Mean Square Error (RMSE) in Assessing Average Model Performance,” vol. 30, 2005.

R. Yulianti and E. Arliani, “Peramalan jumlah penduduk menggunakan model arima Forecasting the number of population using the arima,” Jurnal Kajian dan Terapan Matematika, vol. 8, no. 2, pp. 114–128, 2022.

Zahrotunnimah, “Langkah Taktis Pemerintah dalam Pencegahan Penyebaran Virus Corona Covid-19 di Indonesia,” Jurnal Sosial & Budaya Syar’i, vol. 7, no. 3, pp. 247–260, 2020.

C. Gunawan, Anomali COVID-19 : Dampak Positif Virus Corona Untuk Dunia, (M. Archi (ed.)). CV IRDH., 2020.

W. Seto, D. Tsang, and R. Yung, “Effectiveness of Precautions Against Droplets and Contact in Prevention of Nosocomial Transmission of Severe Acute Respiratory Syndrome (SARS),” Lancet, vol. 361, no. 9368, pp. 1519–1520, 2003.

Nurahman and A. Diana, “ALGORITMA K-MEANS UNTUK MELIHAT PENULARAN TERTINGGI VIRUS COVID-19 DISELURUH PROVINSI INDONESIA,” Jurnal Ilmiah Betrik, vol. 12, no. 02, 2021.

S. Burwell, F. Townsend, T. Bollyky, and S. Patrick, Improving Pandemic Preparedness Lessons From COVID-19. New York: Council on Foreign Relations, 2020.

H. Wiguna, Y. Nugraha, R. Farizah, A. Andika, K. Juan, and S. Alex, “Kebijakan Berbasis Data: Analisis dan Prediksi Penyebaran COVID-19 di Jakarta dengan Metode Autoregressive Integrated Moving Average (ARIMA),” Jurnal Sistem Cerdas, vol. 03, no. 02, pp. 74–83, 2020.

D. Benvenuto, M. Giovanetti, L. Vasallo, S. Angeletti, and M. Ciccozzi, “Application of the ARIMA model on the COVID-2019 epidemic dataset,” Data in brief, vol. 29, p. 105340, 2020.

T. Chakraborty and I. Ghosh, “Real-time forecasts and risk assessment of novel coronavirus (COVID-19) cases: A data-driven analysis.,” Chaos, Solitons & Fractals, vol. 135, p. 109850, 2020.

M. Syafrudin, L. Fitriyani, and J. Rhee, “Forecasting COVID-19 cases in Indonesia using ARIMA models. Journal of Infection and Public Health,” vol. 14, no. 6, pp. 863–868, 2021.

R. Adhikari and R. Agrawal, “An Introductory Study on Time series Modeling and Forecasting,” LAP LAMBERT Academic Publishing, 2013.

G. Makridakis, C. Wheelwright, and R. Hyndman, Forecasting: Methods and Application, 3rd ed. New Jersey: John Wiley & Sons, Inc., 1998.

C. Wilmott and K. Matsuura, “Advantages of the Mean Absolute Error (MAE) over the Root Mean Square Error (RMSE) in Assessing Average Model Performance,” vol. 30, 2005.

R. Yulianti and E. Arliani, “Peramalan jumlah penduduk menggunakan model arima Forecasting the number of population using the arima,” Jurnal Kajian dan Terapan Matematika, vol. 8, no. 2, pp. 114–128, 2022.

G. Putri, H. Ni Putu, and M. Nurhidayati, “PEMODELAN DATA DERET WAKTU DENGAN AUTOREGRESSIVE INTEGRATED MOVING AVERAGE DAN LOGISTIC SMOOTHING TRANSITION AUTOREGRESSIVE,” JURNAL VARIAN, vol. 1, no. 1, 2017.


Refbacks

  • Saat ini tidak ada refbacks.


View My Stats